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Embedded!



The Challenge For Embedded Methods 

• Embedded/Intrusive Methods: 
–  Exploiting simulation code structure for improved performance 

(speed, accuracy, robustness,…) 
–  Requiring more information from code beyond repeated simulation 

• Performance advantages often remarkable 
–  Intrusiveness into code often also significant 

• Bridging the gap between algorithms research and applications is 
the challenge 
–  Requires significant effort and foresight of code developers 
–  A priori unclear which, if any, methods will significantly impact 

application 

• A path forward is necessary that 
–  Enables a wide variety of important embedded methods 
–  Eases burden on simulation code developers 



Overview 

•  Sensitivity Analysis 
–  Forward & Adjoint methods 

•  Uncertainty Quantification 
–  Stochastic Galerkin 
–  Adjoint 

• Optimization 
–  NAND to SAND 

•  A path forward 
–  Code interfaces 
–  Automatic Differentiation 

0 = f(u̇(t), u(t), p, t), t ∈ [t0, tf ]
u(t0) = u0(p)
u̇(t0) = u̇0(p)

v(p) =
∫ tf

t0

g(u̇(t), u(t), p, t)dt + h(u̇(tf), u(tf), p)

Mathematical Model 



Steady-State Embedded Sensitivity Analysis 

Forward sensitivities 

•  Cost scales with number of 
parameters 

•  Solve system Jacobian 

f(u, p) = 0, v(p) = h(u, p)
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Adjoint sensitivities 

•  Cost scales with number of 
observation functions 

•  Solve system Jacobian-transpose 

•  Small extension for Newton-based codes 
•  Sensitivity (linear) solves significantly cheaper than (nonlinear) state solves 
•  Accurate derivatives critical (can’t use approximate Jacobian) 
•  Simulation code must evaluate observation functions & gradients 



Adjoint sensitivities 

•  Linear ODE for adjoint that must be 
integrated backward in time 

•  Requires full forward model 
integration first (or check-pointing) 

•  Cost scales with number of 
objective functions 

•  Petzold et al 

Transient Embedded Sensitivity Analysis 

Forward sensitivities 

•  Linear ODE for sensitivities 
solved alongside original model 

•  Cost scales with number of 
parameters 

•  Hindmarsh et al 
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Costs and Benefits for Embedded SA 

• Costs & Limitations 
– Only local analysis 
– Requires accurate derivatives 
– Adjoint approach requires 

specialized time integration tools 
•  SUNDIALS, Trilinos/Rythmos 

• Benefits 
– Orders-of-magnitude cheaper than 

global analysis 
– More accurate, efficient, and robust 

than finite-difference-based analysis 
– Adjoint cost independent of number 

of parameters 
–  Foundation for optimization, error 

estimation, and UQ 

126 sensitivities in 9 simulation’s time! 

Forward transient sensitivity 
analysis of a Charon simulation 
of a radiation-damaged transistor 
with respect to damage 
mechanisms using Rythmos & 
Sacado (Phipps et al). 



Embedded Stochastic Galerkin  
Uncertainty Quantification Methods 

•  Steady-state stochastic problem: 

•  Stochastic Galerkin method (Ghanem, …): 

•  Basis polynomials are tensor products of 1-D orthogonal polynomials of degree P 
–  Gaussian (Hermite polynomials), Uniform (Legendre), … 
–  Assumes independence of random parameters 

•  Method generates new coupled spatial-stochastic nonlinear problem 

•  Total size grows rapidly with degree or dimension 
–  Exponential convergence in degree 

Stochastic 
dimension 

Polynomial 
degree 

Number of 
terms 

5 3 56 
5 252 

10 3 286 
5 3003 

20 3 1,771 
5 ~53,000 

100 3 ~177,000 
5 ~96,000,000 

û(ξ) =
N∑

i=0

uiψi(ξ) → fi(u0, . . . , uN) =
∫

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , N
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Costs and Benefits of Embedded SG 
• Costs & Limitations 

–  R&D needed for effective implementation 
•  Automated code transformation 
•  Data structures and interfaces 
•  Solver algorithms 

–  Effectiveness in hard problems unknown 
–  Likely requires significant HPC resources 
–  Breaks down in presence of discontinuities 

• Benefits 
–  AD, quadrature and solver tools under development 

•  Trilinos/Stokhos/Sacado 
–  Potential for significant savings over non-intrusive methods 
–  Potential for a posteriori error estimates 
–  Generates a response surface that can be quickly sampled for 

•  Probabilities, sensitivities, Bayesian methods (Marzouk et al) 
–  Extensions  

•  Local bases (Le Maitre et al),  non-independent parameters (Wan et 
al), stochastic model reduction (Doostan et al) 



Adjoint-Based Embedded UQ Methods 

•  Piecewise 1st order response surface over a grid (Estep, et al) 

•  Leverages adjoint sensitivity tools 
• Good performance in small dimensions against Monte Carlo 

–  1-2 orders of magnitude reduction in number of samples/grid points 
–  Computing each local response surface is fast 
–  Number of grid points grows exponentially in number of dimensions 
–  Unknown how it compares to other UQ approaches 

•  Naturally adaptive 
–  A posteriori error estimates and adaptivity 
–  No trouble with bifurcations/discontinuities 

•  Extension for inverse uncertainty problems (Butler & Estep) 
•  No general purpose tools available 
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Embedded Optimization 

•  Optimization for 
–  Model Calibration 
–  Validation (computing probability models for inputs of 

multiscale/fidelity models, e.g., Arnst & Ghanem) 
•  Nested Analysis And Design (non-intrusive to semi-

embedded) 
–  Nonlinearly eliminate constraints 
–  Compute reduced sensitivities using finite differences or 

embedded sensitivity techniques 
–  Linear convergence 
–  Small to medium parameter spaces O(1-100) 

•  Simultaneous Analysis and Design (embedded) 
–  Solve optimization and constraints simultaneously 

•  Eliminates constraint solves away from optimum 
–  Built on the same tools as embedded sensitivities 
–  Super-linear to quadratic convergence 
–  First to second derivatives 
–  Scalable to very large parameter spaces 
–  Orders-of-magnitude more efficient than NAND 

•  R&D necessary for challenging problems 
–  Globalizations 
–  Non-smooth systems 
–  KKT solvers for 2nd-derivative-based methods 

Reduced-space (super-linear 
SAND) optimization of flow and 
transport using Trilinos/
MOOCHO.  Courtesy of B. van 
Bloemen Waanders, SNL. 

min
p

h(u, p) s.t. f(u, p) = 0



A Path Forward 

• Significant R&D is needed for embedded methods 
to impact your applications 

• Application codes need to be “born” with these 
technologies 
– Retrofitting is difficult and almost never happens 

• With the right hooks, this is feasible 
– High-level application code interfaces 

• Residuals, Jacobians, objective/observation 
functions, parameter deriv’s, … 

– Automatic differentiation 
•  Tools to implement those interfaces 



High-Level Application Code Interfaces 

• Requirements for many embedded algorithms are simple 
–  Set state values (u, du/dt) 
–  Set parameter values (p) 
–  Compute application residual (f) 
–  Compute observation/objective functions (g, h) 
–  Compute derivatives (df/du, df/dp, …) 

•  Trilinos provides a unified application interface for all of its 
embedded algorithms 
–  Thyra::ModelEvaluator 
–  Can provide decorators/wrappers for 

•  SG residuals/Jacobians 
•  Reduced sensitivities 
•  Integration with Dakota 

• Computing derivatives is usually the difficult part 



Automatic Differentiation Provides Tools for 
Implementing Embedded Algorithm Interfaces 

•  Derivatives are critical for many embedded algorithms 
–  Must be accurate and efficient 

•  Automatic differentiation provides analytic derivatives with minimal 
code development/maintenance 
–  Derivatives at operation-level known, combined with Chain Rule 
–  Any kind of first or higher-order derivative 
–  SG polynomials, intervals, … 
–  Automatically verified to be correct 

• Good tools exist 
–  Fortran -- Source transformation --  OpenAD/ADIFOR 
–  C++ -- Operator overloading, templating -- Trilinos/Sacado 
–  Demonstrated effectiveness, efficiency, and scalability for large-scale 

simulations 

•  Prescription for applying AD simple 
–  Separate parts of the code to be differentiated from others (e.g., element 

residual fill) with well-defined interfaces 
–  Fortran – apply source transformation to those parts 
–  C++ – template those parts for operator overloading 



Concluding Remarks 
• Potentially tremendous computational cost savings 
with embedded methods 

• Significant algorithms R&D is necessary to realize 
those savings in applications 

• Codes must be “born” with these technologies to 
reap their benefits 
– High-level application code interfaces 
– Automatic differentiation to implement those interfaces 

• Separate out differentiable pieces 
•  Template those pieces (for C++ applications) 

• Ideas are complementary to Dakota 
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Auxiliary Slides 



Coupled System Embedded UQ Research 

Input

Component 1

Output

Component 2

Input

Component 1

Output

Component 2
UQ Method

Sampling

Output 
distribution
or statistic

Traditional
"Black Box"

Approach

Input 
distribution

UQ Method
Integration

Deterministic Solver
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Output
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Input 
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Intrusive Coupled Approach
UQ Method 1

Sampling
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Input Component 1 Output

Deterministic Solver 1

Input Component 1 Output

Input OutputComponent 2
Input OutputComponent 2

Deterministic Solver 2

Input OutputComponent 2

UQ Method 1
Integration

UQ Method 2
Sampling

UQ Method 2
Integration

No

Distribution

Distribution

Distribution

Input 2 
distribution

Input 1 
distribution

•  Invert layering of UQ around system 
simulation 

–  Apply UQ to each component 
separately 

–  Stochastic coupled solver technology 
•  Potentially orders of magnitude savings 

–  Heterogeneous UQ 
–  Stochastic dimension reduction 

•  Coupled systems generate large 
dimensional stochastic spaces 
−  10 for component 1 + 10 for 

component 2 = 20 dimensions 
− Cost grows rapidly with dimension 

•  Inverted approach breaks growth 
−  1-dimensional interface between 

components 
−  2 11-dimensional UQ problems 



What is Automatic Differentiation (AD)? 

•  Technique to compute analytic derivatives 
without hand-coding the derivative 
computation 

•  How does it work -- freshman calculus 
–  Computations are composition of 

simple operations (+, *, sin(), etc…) 
with known derivatives 

–  Derivatives computed line-by-line, 
combined via chain rule 

•  Derivatives accurate as original 
computation  

–  No finite-difference truncation errors 

•  Provides analytic derivatives without the 
time and effort of hand-coding them 

2.000 1.000 

7.389 7.389 

0.301 0.500 

0.602 1.301 

7.991 8.690 

0.991 -1.188 



•  Forward Mode: 

–  Propagate derivatives of intermediate variables w.r.t. independent variables forward 
–  Directional derivatives, tangent vectors, square Jacobians,              when  

•  Reverse Mode:   

–  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards 
–  Gradient of a scalar value function with complexity 
–  Gradients, Jacobian-transpose products (adjoints),               when 

•  Taylor polynomial mode: 

•  Basic modes combined for higher derivatives: 

AD Takes Three Basic Forms 



Our AD Research is Distinguished by  
Tools & Approach for Large-Scale Codes 

•  Many AD tools and research projects 
  Most geared towards Fortran (ADIFOR, OpenAD) 
  Most C++ tools are slow (ADOL-C) 
  Most applied in black-box fashion 

•  Sacado:  Operator overloading AD tools for C++ 
applications 
 Multiple highly-optimized AD data types 
  Transform to template code & instantiate on Sacado AD types 
 Apply AD only at the “element level” 

•  This is the only successful, sustainable approach for 
large-scale C++ codes! 

•  Directly impacting QASPR through Charon 
 Analytic Jacobians and parameter derivatives 



Basic Sacado C++ Example 

#include "Sacado.hpp"	

// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
  ScalarT r = c*std::log(b+1.)/std::sin(a);	

  return r;	
}	

int main(int argc, char **argv) {	
  double a = std::atan(1.0);                        // pi/4 	
  double b = 2.0;	
  double c = 3.0;	
  int num_deriv = 2;                                // Number of independent variables	

  // Fad objects	
  Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
  Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
  Sacado::Fad::DFad<double> cfad(c);               // Passive variable	
  Sacado::Fad::DFad<double> rfad;                  // Result	

  // Compute function	
  double r = func(a, b, c);	

  // Compute function and derivative with AD	
  rfad = func(afad, bfad, cfad);	

  // Extract value and derivatives	
  double r_ad = rfad.val();     // r	
  double drda_ad = rfad.dx(0);  // dr/da	
  double drdb_ad = rfad.dx(1);  // dr/db	



Steady-state mass transfer equations: 

Efficiency of AD in Charon 

Efficiency of the element-level derivative computation Set of N hypothetical chemical species: 

•  Forward mode AD 
–  Faster than FD 
–  Better scalability in number of 

PDEs 
–  Analytic derivative 
–  Provides Jacobian for all Charon 

physics 
•  Reverse mode AD 

–  Scalable adjoint/gradient 

slope 



Verification of Automatic Differentiation 

•  Verification of the AD tools 
– Unit-test with respect to known 

derivatives 
– Composite tests 

•  Compare to other tools 
•  Compare to hand-derived  
•  Compare to finite differences 

•  Verification of AD in application 
code 
– Compiler drastically simplifies 

this 
– All of the standard hand-coded 

verification techniques 
•  Compare to finite differences 
•  Nonlinear convergence 

Independent Variables 

Dependent Variables 

… 

… 

… 

… 

Compiler type 
mechanism will not 
allow breaking the 
chain from 
independent to 
dependent variables 



Charon Drift-Diffusion  
Formulation with Defects 

Defect Continuity 

Include electron capture and hole capture by defect species 
and reactions between various defect species 

Electric potential 

Electron emission/
capture 

Current 
Conservation for e- 

and h+ 

Cross section 

Activation Energy 

Recombination/ 
generation source 

terms 



Rythmos Sensitivity Analysis Capability 
Demonstrated on the QASPR Simple Prototype* 

*Phipps et al


1st-order Finite Difference Accuracy 

•  Bipolar Junction Transistor 
•  Pseudo 1D strip (9x0.1 micron) 
•  Full defect physics 
•  126 parameters 

Sensitivities show dominant physics 

Comparison to FD: 
  Sensitivities at all time points 
  More accurate 
  More robust 
  14x faster! 

Sensitivities computed at all times 
FD perturbation size




Application A 
A(x,p) = 0 

Application B 
B(x,p) = 0 

Application C 
C(x,p) = 0 

Time Integration Optimization UQ 

Issues: 
•  costly implementation 
•  duplication of effort 
•  difficult to maintain 

.... 

.... 

Interfacing Abstract Numerical  
Algorithms (ANA) To Applications 



Application A 
A(x,p) = 0 

Trilinos Thyra::ModelEvaluator 
f(x,p) = 0 

Application B 
B(x,p) = 0 

Application C 
C(x,p) = 0 

Time Integration Optimization UQ .... 

.... 

Interfacing Abstract Numerical  
Algorithms (ANA) To Applications 

http://trilinos.sandia.gov/ 

• Input requirements: 
- State x 
- Parameters p 

• Output options: 
- Residual f 
- Jacobian df/dx 
- Adjoint df/dx^T 
- Parameter derivs df/dp 
- Observation funcs g 
- … 

• Decorators: 
- SG residuals/Jacobians 
- State elimination 
- Reduced sensitivities 
- … 


